Genetic Risk Factors for Idiopathic Urolithiasis: The Causative Role of Genes in Stones Formation

Jatmiko susilo


Background: The genetic factor of urolithiasis plays an important role in the etiology. Elucidation of responsible genes can lead to better targeted gene therapy and prevention in the future. This article aims to explain various genetic factors that play a role in kidney stone formation Method: A review article on urolithiasis based on a genetic approach is reported to underlie stone formation. A total of 41 abstracts and research articles published by internationally reputed journals were selected based on the keywords genetic factors and urolithiasis. Summary: A deeper understanding of the genetic factors that play a role in the mechanisms of stone formation and advances in molecular and pharmacogenomics have revolutionized diagnosis and treatment, and paved the way for the identification of new therapeutic targets and treatment approaches based on genetic engineering.


genetic, urolithiasis, stones formation

Full Text:



Atar, A., Gedikbasi, A., Sonmezay, E., Kiraz, Z. K., Abbasoglu, S., Tasci, A. I., & Tugcu, V. (2016). Serum paraoxonase-1 gene polymorphism and enzyme activity in patients with urolithiasis. Renal Fail, 38(3), 378–382.

Atmoko, W., Raharja, P., Birowo, P., Hamid, A., Taher, A., & Rasyid, N. (2021). Genetic polymorphisms as prognostic factors for recurrent kidney stones: A systematic review and meta-analysis. PloS one, 16(5), e0251235.

Belostotsky, R., Seboun, E., Idelson, G. H., Milliner, D. S., Becker-Cohen, R., Rinat, C., Monico, C. G., Feinstein, S., Ben-Shalom, E., Magen, D., Weissman, I., Charon, C., & Frishberg, Y. (2010). Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am. J Human Genet, 87(3), 392–399.

Boassa, D., & Yool, A.J. (2003), Single amino acids in the carboxyl terminal domain of aquaporin-1 contribute to cGMP-dependent ion channel activation. BMC Physiol 3, 12

Chen Y, Ren X, Li C, Xing S, Fu Z, Yuan Y, Wang R, Wang Y, Lv W (2015) CARD8 rs2043211 polymorphism is associated with gout in a Chinese male population. Cell Physiol Biochem. ;35(4):1394‐1400.

Chou YH, Juo SH, Chiu YC, Juo, S.H.H, Chiu, Y.C., Liu, M.E., Chen, W.C., Chang, C.C., Chang, W.P., Chang, J.G., and Chang, W.C., (2011), A polymorphism of the ORAI1 gene is associated with the risk and recurrence of calcium nephrolithiasis. J Urol.;185(5):1742‐1746.

Çoker Gurkan A, Arisan S, Arisan ED, Sönmez NC, Palavan Ünsal N. (2013) Association between IL-1RN VNTR, IL-1β -511 and IL-6 (-174, -572, -597) gene polymorphisms and urolithiasis. Urol Int.;91(2):220‐226.

Feliubadaló, L., Font, M., Purroy, J., Rousaud, F., Estivill, X., Nunes, V., Golomb, E., Centola, M., Aksentijevich, I., Kreiss, Y., Goldman, B., Pras, M., Kastner, D. L., Pras, E., Gasparini, P., Bisceglia, L., Beccia, E., Gallucci, M., de Sanctis, L., Ponzone, A., … International Cystinuria Consortium (1999). Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat Genet, 23(1), 52–57.

Giafi, C. F., & Rumsby, G. (1998). Kinetic analysis and tissue distribution of human D-glycerate dehydrogenase/glyoxylate reductase and its relevance to the diagnosis of primary hyperoxaluria type 2. Annals Clin Biochem, 35 (Pt 1), 104–109.

Goldfarb, D. S., Fischer, M. E., Keich, Y., & Goldberg, J. (2005). A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam Era Twin (VET) Registry. Kidney Int, 67(3), 1053–1061.

Guha, M., Bankura, B., Ghosh, S., Pattanayak, A. K., Ghosh, S., Pal, D. K., Puri, A., Kundu, A. K., & Das, M. (2015). Polymorphisms in CaSR and CLDN14 Genes Associated with Increased Risk of Kidney Stone Disease in Patients from the Eastern Part of India. PloS one, 10(6), e0130790.

Hoenderop, J. G., van der Kemp, A. W., Hartog, A., van de Graaf, S. F., van Os, C. H., Willems, P. H., & Bindels, R. J. (1999). Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem, 274(13), 8375–8378.

Joshi, S., Wang, W., & Khan, S. R. (2017). Transcriptional study of hyperoxaluria and calcium oxalate nephrolithiasis in male rats: Inflammatory changes are mainly associated with crystal deposition. PloS one, 12(11), e0185009.

Kahles, F., Findeisen, H. M., & Bruemmer, D. (2014). Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol.Metab, 3(4), 384–393.

Lin, Y., Mao, Q., Zheng, X., Chen, H., Yang, K., & Xie, L. (2011). Vitamin D receptor genetic polymorphisms and the risk of urolithiasis: a meta-analysis. Urol Int, 86(3), 249–255.

Monico CG, Olson JB, & Milliner DS. (2005), Implications of genotype and enzyme phenotype in pyridoxine response of patients with type I primary hyperoxaluria. Am J Nephrol. ;25(2):183‐188.

Monico CG, Persson M, Ford GC, Rumsby G, Milliner DS. (2002), Potential mechanisms of marked hyperoxaluria not due to primary hyperoxaluria I or II. Kidney Int. ;62(2):392‐400.

Monico, C. G., Rossetti, S., Belostotsky, R., Cogal, A. G., Herges, R. M., Seide, B. M., Olson, J. B., Bergstrahl, E. J., Williams, H. J., Haley, W. E., Frishberg, Y., & Milliner, D. S. (2011). Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. CJASN, 6(9), 2289–2295.

Okamoto N, Aruga S, Matsuzaki S, Takahashi S, Matsushita K, & Kitamura T.(2007) Associations between renal sodium-citrate cotransporter (hNaDC-1) gene polymorphism and urinary citrate excretion in recurrent renal calcium stone formers and normal controls. Int J Urol.;14(4):344‐349.

Pearle, M. S., Goldfarb, D. S., Assimos, D. G., Curhan, G., Denu-Ciocca, C. J., Matlaga, B. R., Monga, M., Penniston, K. L., Preminger, G. M., Turk, T. M., White, J. R., & American Urological Assocation (2014). Medical management of kidney stones: AUA guideline. J. Urol, 192(2), 316–324.

Relan, V, Khullar, M, Singh, SK, and Sharma, SK (2004). Association of vitamin d receptor genotypes with calcium excretion in nephrolithiatic subjects in northern India. Urol Res 32 (3) 236-240

Rendina, D., Esposito, T., Mossetti, G., De Filippo, G., Gianfrancesco, F., Perfetti, A., Formisano, P., Prié, D., Strazzullo, P., 2012. A Functional Allelic Variant of the FGF23 Gene Is Associated with Renal Phosphate Leak in Calcium Nephrolithiasis. J. Clin. Endocrinol. Metab. 97, E840-4.

Renkema, K. Y., Lee, K., Topala, C. N., Goossens, M., Houillier, P., Bindels, R. J., & Hoenderop, J. G. (2009). TRPV5 gene polymorphisms in renal hypercalciuria. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 24(6), 1919–1924.

Romero, V., Akpinar, H., & Assimos, D. G. (2010). Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol, 12(2-3), e86–e96.

Rungroj, N., Sudtachat, N., Nettuwakul, C., Sawasdee, N., Praditsap, O., Jungtrakoon, P., Sritippayawan, S., Chuawattana, D., Borvornpadungkitti, S., Predanon, C., Susaengrat, W., & Yenchitsomanus, P. T. (2012). Association between human prothrombin variant (T165M) and kidney stone disease. PloS one, 7(9), e45533.

Smith J, Mattoo TK, Stapleton FB. 2010, Patient information: Kidney Stones in children. online.

Sorokin, I., Mamoulakis, C., Miyazawa, K., Rodgers, A., Talati, J., & Lotan, Y. (2017). Epidemiology of stone disease across the world. World J Urol, 35(9), 1301–1320.

Telci, D., Dogan, A. U., Ozbek, E., Polat, E. C., Simsek, A., Cakir, S. S., Yeloglu, H. O., & Sahin, F. (2011). KLOTHO gene polymorphism of G395A is associated with kidney stones. Am J Nephrol, 33(4), 337–343.

Thorleifsson, G., Holm, H., Edvardsson, V., Walters, G. B., Styrkarsdottir, U., Gudbjartsson, D. F., Sulem, P., Halldorsson, B. V., de Vegt, F., d'Ancona, F. C., den Heijer, M., Franzson, L., Christiansen, C., Alexandersen, P., Rafnar, T., Kristjansson, K., Sigurdsson, G., Kiemeney, L. A., Bodvarsson, M., Indridason, O. S., … Stefansson, K. (2009). Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat. Gen, 41(8), 926–930.

Torres, R. J., & Puig, J. G. (2007). Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J Rare Dis, 2, 48.

Torres, R. J., Prior, C., & Puig, J. G. (2007). Efficacy and safety of allopurinol in patients with hypoxanthine-guanine phosphoribosyltransferase deficiency. Metabolism: clinical and experimental, 56(9), 1179–1186.

Tsuji, H., Shimizu, N., Nozawa, M., Umekawa, T., Yoshimura, K., De Velasco, M. A., Uemura, H., & Khan, S. R. (2014). Osteopontin knockdown in the kidneys of hyperoxaluric rats leads to reduction in renal calcium oxalate crystal deposition. Urolithiasis, 42(3), 195–202.

Türk, C., Petřík, A., Sarica, K., Seitz, C., Skolarikos, A., Straub, M., & Knoll, T. (2016). EAU Guidelines on Diagnosis and Conservative Management of Urolithiasis. European Urol, 69(3), 468–474.

Tzou, D. T., Taguchi, K., Chi, T., & Stoller, M. L. (2016). Animal models of urinary stone disease, Int J. Surgery (London, England), 36(Pt D), 596–606.

Vezzoli, G., Terranegra, A., Aloia, A., Arcidiacono, T., Milanesi, L., Mosca, E., Mingione, A., Spotti, D., Cusi, D., Hou, J., Hendy, G. N., Soldati, L., GENIAL network (Genetics and Environment in Nephrolithiasis Italian Alliance), Paloschi, V., Dogliotti, E., Brasacchio, C., Dell'Antonio, G., Montorsi, F., Bertini, R., Bellinzoni, P., … Del Prete, D. (2013). Decreased transcriptional activity of calcium-sensing receptor gene promoter 1 is associated with calcium nephrolithiasis. J Clinl Endocrinol Metab, 98(9), 3839–3847.

Vezzoli, G., Terranegra, A., Arcidiacono, T., Biasion, R., Coviello, D., Syren, M. L., Paloschi, V., Giannini, S., Mignogna, G., Rubinacci, A., Ferraretto, A., Cusi, D., Bianchi, G., & Soldati, L. (2007). R990G polymorphism of calcium-sensing receptor does produce a gain-of-function and predispose to primary hypercalciuria. Kidney Int., 71(11), 1155–1162.

Williams, E. L., Acquaviva, C., Amoroso, A., Chevalier, F., Coulter-Mackie, M., Monico, C. G., Giachino, D., Owen, T., Robbiano, A., Salido, E., Waterham, H., & Rumsby, G. (2009). Primary hyperoxaluria type 1: update and additional mutation analysis of the AGXT gene. Human Mut, 30(6), 910–917.

Xiao, X., Dong, Z., Ye, X., Yan, Y., Chen, X., Pan, Q., Xie, Y., Xie, J., Wang, Q., & Yuan, Q. (2016). Association between OPN genetic variations and nephrolithiasis risk. Biomed Rep, 5(3), 321–326.

Xu Y, Zeng G, Mai Z, Ou L. (2014), Association study of DGKH gene polymorphisms with calcium oxalate stone in Chinese population. Urolithiasis. ;42(5):379‐385.

Xu, C., Song, R. J., Yang, J., Jiang, B., Wang, X. L., Wu, W., & Zhang, W. (2013). Klotho gene polymorphism of rs3752472 is associated with the risk of urinary calculi in the population of Han nationality in Eastern China. Gene, 526(2), 494–497.

Yasui, T., Okada, A., Urabe, Y. Usami,M., Mizuno, K., Kubota, Y., Tozawa, K., Sasaki, S., Higashi, Y., Sato, Y., Kubo, M., Nakamura, Y., Matsuda, K., & Kohri. K., (2013), A replication study for three nephrolithiasis loci at 5q35.3, 7p14.3 and 13q14.1 in the Japanese population. J Hum Genet 58, 588–593.



  • There are currently no refbacks.

Google Scholar


Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.