Pattern Recognition untuk Klasifikasi Penyakit Kanker Kulit menggunakan Artificial Intelligence (AI)
DOI:
https://doi.org/10.35473/ikn.v2i1.3563Keywords:
Klasifikasi, InceptionV3; Convolutional Neural Network; Kanker KulitAbstract
This research aims to classify skin cancer images using an artificial intelligence method called Convolutional Neural Networks (CNN). The study focuses on classifying skin cancer into 7 categories, using data from the International Skin Imaging Collaboration (ISIC). We employed the CNN algorithm to train the model, which involved learning features, classifying images, and optimizing the model. To evaluate the model's performance, we experimented with different training data proportions (70%, 80%, and 90%), dropout rates (0.5, 0.6, 0.7, and 0.8), and batch sizes (8, 16, 32, 64). The best results were achieved with 80% of the data for training, a dropout rate of 0.4, and a batch size of 16, resulting in an accuracy of 83.22%.
ABSTRAK
Penelitian ini bertujuan untuk mengimplementasikan metode kecerdasan buatan melalui algoritma Convolution Neural Network (C-NN) untuk mengklasifikasikan citra kanker kulit. Objek pada penelitian ini adalah klasifikasi kanker kulit dengan berdasarkan 7 kategori kanker kulit, sedangkan Data yang digunakan oleh peneliti adalah data yang bersumber dari The International Skin Imaging Collaboration (ISIC). Metode yang digunakan peneliti adalah Algoritma Convolutional Neural Networks (CNN). Pada data training dilakukan pembelajaran fitur, klasifikasi, dan optimum model, dimana proses ini merupakan implementasi algoritma yang digunakan. Skenario pengujian dengan indikator skenario pengujian yaitu pembagian data training 70%, 80%, dan 90%, inisialisasi Dropout layer bernilai 0.5, 0.6, dan 0.7, dan 0,8 dan Batchsize bernilai 8, 16, 32, 64. Kesimpulan dari Penelitian ini adalah mendapatkan model terbaik dengan nilai akurasi 83.22% dari komposisi data Taining 80%, Dropout 0.4 dan Batchsize 16.
Downloads
References
Anjani, I.A., Pratiwi, Y.R. and Norfa Bagas Nurhuda, S. (2021) ‘Implementation of Deep Learning Using Convolutional Neural Network Algorithm for Classification Rose Flower’, Journal of Physics: Conference Series, 1842(1). Available at: https://doi.org/10.1088/1742-6596/1842/1/012002.
Budiarto Hadiprakoso, R. and Buana, I.K.S. (2021) ‘Deteksi Serangan Spoofing Wajah Menggunakan Convolutional Neural Network’, Jurnal Teknik Informatika dan Sistem Informasi, 7(3), pp. 618–626. Available at: https://doi.org/10.28932/jutisi.v7i3.4001.
Findry, F. and Rizal Adi Saputra (2024) ‘Klasifikasi Kanker Kulit Berdasarkan Data Citra Benign Dan Malignant Menggunakan Convolutional Neural Network’, Jurnal Mahasiswa Teknik Informatika, 3(1), pp. 1–9. Available at: https://doi.org/10.35473/jamastika.v3i1.2417.
Gayathri, P. et al. (2023) ‘Exploring the Potential of VGG-16 Architecture for Accurate Brain Tumor Detection Using Deep Learning’, Journal of Computers, Mechanical and Management, 2(2), pp. 1–10. Available at: https://doi.org/10.57159/gadl.jcmm.2.2.23056.
Hasan, N. et al. (2023) ‘Skin cancer : understanding the journey of transformation from conventional to advanced treatment approaches’, Molecular Cancer, pp. 1–71. Available at: https://doi.org/10.1186/s12943-023-01854-3.
Informatika, P.S. et al. (2023) ‘KLASIFIKASI JENIS KANKER KULIT MANUSIA’, pp. 144–150.
Khan, N.H. et al. (2022) ‘Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures’, Journal of Advanced Research, 36, pp. 223–247. Available at: https://doi.org/10.1016/j.jare.2021.06.014.
Kosman, A.W., Wahyuningsih, Y. and Mahendrasusila, F. (2024) ‘Pengujian Metode Inception V3 dalam Mengidentifikasi Penyakit Kanker Kulit’, Jurnal Teknologi Informatika dan Komputer, 10(1), pp. 132–142. Available at: https://doi.org/10.37012/jtik.v10i1.1940.
Luqman Hakim, Sari, Z. and Handhajani, H. (2021) ‘Klasifikasi Citra Pigmen Kanker Kulit Menggunakan Convolutional Neural Network’, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(2), pp. 379–385. Available at: https://doi.org/10.29207/resti.v5i2.3001.
Mao, T. and Zhou, D.X. (2023) ‘Rates of approximation by ReLU shallow neural networks’, Journal of Complexity, 79, p. 101784. Available at: https://doi.org/10.1016/j.jco.2023.101784.
Minarno, A.E. et al. (2022) ‘Convolutional Neural Network featuring VGG-16 Model for Glioma Classification’, INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION, 6(September), pp. 660–666. Available at: www.joiv.org/index.php/joiv.
Mohammad Yazdi Pusadan et al. (2022) ‘k-Nearest Neighbor and Feature Extraction on Detection of Pest and Diseases of Cocoa’, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(3), pp. 471–480. Available at: https://doi.org/10.29207/resti.v6i3.4064.
Mousavi, S. and Farahani, G. (2022) ‘A Novel Enhanced VGG16 Model to Tackle Grapevine Leaves Diseases With Automatic Method’, IEEE Access, 10(September), pp. 111564–111578. Available at: https://doi.org/10.1109/ACCESS.2022.3215639.
Nagpal, C. and Dubey, S.R. (2019) ‘A Performance Evaluation of Convolutional Neural Networks for Face Anti Spoofing’, Proceedings of the International Joint Conference on Neural Networks, 2019-July, pp. 1–8. Available at: https://doi.org/10.1109/IJCNN.2019.8852422.
Nurlitasari, D.A., Magdalena, R. and Fu’adah, R.Y.N. (2022) ‘Analisis Performansi Sistem Klasifikasi Kanker Kulit Menggunakan Convolutional Neural Network’, Journal of Electrical and System Control Engineering, 5(2), pp. 91–99. Available at: https://doi.org/10.31289/jesce.v5i2.5691.
Paraijun, F., Aziza, R.N. and Kuswardani, D. (2022) ‘Implementasi Algoritma Convolutional Neural Network Dalam Mengklasifikasi Kesegaran Buah Berdasarkan Citra Buah’, Kilat, 11(1), pp. 1–9. Available at: https://doi.org/10.33322/kilat.v10i2.1458.
Putra, L.S.A., Gunawan, V.A. and Saragih, A.S. (2023) ‘Detection of Actinic Keratosis Skin Cancer Using Gray Level Co-occurrence Matrix Texture Extraction and Color Extraction With Support Vector Machine Classification’, Teknik, 44(2), pp. 158–166. Available at: https://doi.org/10.14710/teknik.v44i2.44895.
Rahman, S. et al. (2024) ‘Normalization Layer Enhancement in Convolutional Neural Network for Parking Space Classification’, MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 23(3), pp. 557–568. Available at: https://doi.org/10.30812/matrik.v23i3.3871.
Al Rivan, M.E. and Riyadi, A.G. (2021) ‘Perbandingan Arsitektur LeNet dan AlexNet Pada Metode Convolutional Neural Network Untuk Pengenalan American Sign Language’, Jurnal Komputer Terapan, 7(1), pp. 53–61. Available at: https://doi.org/10.35143/jkt.v7i1.4489.
Schadendorf, D. et al. (2023) ‘EJC Skin Cancer’, EJC Skin Cancer, 1(April), p. 100001. Available at: https://doi.org/10.1016/j.ejcskn.2023.100001.
Sitepu, A.C. and Sigiro, M. (2021) ‘Analisis Fungsi Aktivasi ReLu Dan Sigmoid Menggunakan Optimizer SGD Dengan Representasi MSE Pada Model Backpropagation’, Jurnal Teknik Informatika Komputer Universal, 1(1), pp. 12–25.
Wibawa, L.P. et al. (2019) ‘The epidemiology of skin cancer at Dr. Cipto Mangunkusumo National Central General Hospital from 2014 to 2017’, Journal of General-Procedural Dermatology & Venereology Indonesia, 4(1), pp. 11–16. Available at: https://doi.org/10.19100/jdvi.v4i1.162.
Wilvestra, S., Lestari, S. and Asri, E. (2018) ‘Studi Retrospektif Kanker Kulit di Poliklinik Ilmu Kesehatan Kulit dan Kelamin RS Dr. M. Djamil Padang Periode Tahun 2015-2017’, Jurnal Kesehatan Andalas, 7(Supplement 3), p. 47. Available at: https://doi.org/10.25077/jka.v7i0.873.
Yahya, Y.F. et al. (2021) ‘Pemberdayaan tenaga kesehatan pada fasilitas kesehatan primer di Kecamatan Sungsang: pengenalan kanker kulit’, Jurnal Pengabdian Masyarakat Humanity and Medicine, 2(2), p. 9. Available at: https://doi.org/10.32539/Hummed.V2I2.55.
Yohannes, R. and Al Rivan, M.E. (2022) ‘Klasifikasi Jenis Kanker Kulit Menggunakan CNN-SVM’, Jurnal Algoritme, 2(2), pp. 133–144. Available at: https://doi.org/10.35957/algoritme.v2i2.2363.
Yuniarti, T. and Anggraeni, T. (2018) ‘Dampak Tempat Pembuangan Akhir Sampah Putri Cempo Surakarta Terhadap Penyakit Kulit Pada Masyarakat Mojosongo’, Jurnal Ilmiah Rekam Medis dan Informatika Kesehatan, ISSN 2086-2628, 8(1), pp. 26–29. Available at: https://www.ejurnalinfokes.apikescm.ac.id/index.php/infokes/article/view/193/166.
Zafar, A. et al. (2022) ‘A Comparison of Pooling Methods for Convolutional Neural Networks’, Applied Sciences (Switzerland), 12(17), pp. 1–21. Available at: https://doi.org/10.3390/app12178643.