Analisis dan Rekomendasi Character Pada Game Genshin Impact Berdasarkan Revenue Banner Menggunakan Algoritma Clustering
DOI:
https://doi.org/10.35473/jamastika.v3i1.2741Abstract
In the era of video game industry development, optimizing monetization within games has become a primary concern for developers. Analyzing revenue data from banner characters and categorizing characters are relevant steps, especially for players who are new to the game. This involves providing character recommendations based on the income generated from game banners. The main issue faced by players is the difficulty in choosing the right banner characters to invest in, considering that each banner features different characters with varying appearance statistics. Additionally, players need guidance in identifying characters with the most potential to enhance their performance. The approach employed in this research involves using Clustering Algorithms to group characters based on factors relevant to banner income, including character popularity, availability in banners, and their unique abilities. Detailed transaction data analysis in the game is conducted using K-Means Clustering and Hierarchical Clustering algorithms to generate character groups. The research results demonstrate that employing clustering algorithms produces character groups that provide insights for players to consider allocating their resources to characters categorized in high-income or low-income groups. By using character recommendations based on these groups, players can be guided to select characters that align with their preferences and gameplay styles.
References
Angelia, C., Hutabarat, F. A. M., Nugroho, N., Arwin, A., & Ivone, I. (2021). Perilaku Konsumtif Gamers Genshin Impact terhadap Pembelian Gacha. Journal of Business and Economics Research (JBE), 2(3), 61–65. https://doi.org/10.47065/JBE.V2I3.909
Billard, L., & Kim, J. (2017). Hierarchical clustering for histogram data. Wiley Interdisciplinary Reviews: Computational Statistics, 9(5). https://doi.org/10.1002/WICS.1405
Dani, A. T. R., Wahyuningsih, S., & Rizki, N. A. (2019). Penerapan Hierarchical Clustering Metode Agglomerative pada Data Runtun Waktu. Jambura Journal of Mathematics, 1(2), 64–78. https://doi.org/10.34312/JJOM.V1I2.2354
Devila, L. E., Cholil, S. R., Athallah, R. D., & Irawan, A. A. (2022). Implementasi Algoritma K-Means untuk Menganalisa Pemain Video Game Mobile Legend untuk Mengetahui Tipe Hero dan Role yang Sering Digunakan pada Setiap Kalangan. STRING (Satuan Tulisan Riset Dan Inovasi Teknologi), 6(3), 261–268. https://doi.org/10.30998/STRING.V6I3.11094
Febriansyah, A. R., & Arifin, T. (2023). Penerapan Algoritma K-Means Clustering Pada Agent Video Game Valorant. 4(1).
Giordani, P., Ferraro, M. B., & Martella, F. (2020). Hierarchical Clustering. 9–73. https://doi.org/10.1007/978-981-13-0553-5_2
Huruf, P. N., Susun, P., Bahasa Bali, K., Made, I., Yuliawan, R., Care Khrisne, D., & Mertasana, P. A. (2019). I Made Rian Yuliawan, Duman Care Khrisne, Putu Arya Mertasana Penerapan Algoritma K-Means Clustering dalam. In Jurnal SPEKTRUM (Vol. 6, Issue 3).
Köhn, H., & Hubert, L. J. (2015). Hierarchical Cluster Analysis. Wiley StatsRef: Statistics Reference Online, 1–13. https://doi.org/10.1002/9781118445112.STAT02449.PUB2
Mardalius, M. (2018). PEMANFAATAN RAPID MINER STUDIO 8.2 UNTUK PENGELOMPOKAN DATA PENJUALAN AKSESORIS MENGGUNAKAN ALGORITMA K-MEANS. JURTEKSI, 4(2), 123–132. https://doi.org/10.33330/JURTEKSI.V4I2.36
Murtagh, F., & Contreras, P. (2012). Algorithms for hierarchical clustering: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1), 86–97. https://doi.org/10.1002/WIDM.53
Mustofa, M. (2019). Penerapan Algoritma K-Means Clustering pada Karakter Permainan Multiplayer Online Battle Arena. Jurnal Informatika, 6(2), 246–254. https://doi.org/10.31311/JI.V6I2.6096
Nielsen, F. (2016). Hierarchical Clustering. 195–211. https://doi.org/10.1007/978-3-319-21903-5_8
Reynaldo, Y., Triayudi, A., & Ningsih, S. (2022). Analisis Faktor yang Mempengaruhi Gamers PC dan Konsol Beralih ke Game Mobile menggunakan Metode K-Means Clustering. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 6(1), 42–48. https://doi.org/10.35870/JTIK.V6I1.383
Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727. https://doi.org/10.1109/ACCESS.2020.2988796
Song, J., Li, F., Li -, R., He, H., Sun, B., Yang, Y., -, al, Zhao, Y., & Zhou, X. (2021). K-means Clustering Algorithm and Its Improvement Research. Journal of Physics: Conference Series, 1873(1), 012074. https://doi.org/10.1088/1742-6596/1873/1/012074
Zhao, Y., & Zhou, X. (2021). K-means Clustering Algorithm and Its Improvement Research. Journal of Physics: Conference Series, 1873(1), 012074. https://doi.org/10.1088/1742-6596/1873/1/012074