Identifikasi Pola Tanda Tangan Berbasis Jaringan Syaraf Tiruan Dengan Metode Learning Vector Quantization

Authors

  • Yoannes Romando Sipayung Universitas Ngudi Waluyo
  • Suamanda Ika Novichasari Universitas Ngudi Waluyo

Abstract

Abstrak - The introduction of signature patterns is one of the fields of pattern recognition that is currently developing. Each person's signature is generally identical but not the same. LVQ is a method of artificial neural networks to conduct learning in a supervised competitive layer. There are previous studies that use this method, but in these studies do not include the processing time needed to identify signature patterns. This research will test using this method. In this study, used image data with a size of 433 x 276 pixels as many as 300 pieces from 30 people, where each person was taken 10 signatures. For training data, the data is 180 signatures, while 120 test data are used for the test data. This study uses Canny edge detection to obtain an edge in the signature image. During the training process and LVQ testing, the process was carried out 3 times. The results of the training and testing with the LVQ metodel indicate that the method can identify the signature pattern well.

 

Keywords:  Signature Patterns, Artificial Neural Network, Learning Vector Quantization

 

References

Kusumadewi, Artificial Intellegence (Teknik dan Aplikasinya), Yogyakarta: Graha Ilmu, 2003, P 1 - 2.

Wijaya, Marvin Ch dan Agus Prijono, Pengolahan Citra Digital Menggunakan Matlab, Bandung: Informatika, 2007.

Puspitaningrum, Diyah, Pengantar Jaringan Saraf Tiruan, Yogyakarta: Andi Offset, 2006.

Puspitaningrum, Diyah, Pengantar Jaringan Saraf Tiruan, Yogyakarta: Andi Offset, 2006, P 9 -10.

Puspitaningrum, Diyah, Pengantar Jaringan Saraf Tiruan, Yogyakarta: Andi Offset, 2006, P 21.

Ranadhi, Djalu, Wawan Indarto, Taufiq Hidayat, “Implementasi Learning Vector Quantization (LVQ) Untuk Pengenalan Pola Sidik Jari Pada Sistem Informasi Narapidana LP Wirogunanâ€, Media informatika. Vol. 4, No. 1, 2006.

BW, Tjokorda Agung, I Gede Rudy Hermanto, dan Retno Novi D, â€Pengenalan Huruf Bali Menggunakan Metode Modified Direction Feature (MDF) dan Learning Vector Quantization (LVQ).†Konferensi Nasional Sistem dan Informatika, 2009.

Sela, Enny Itje dan Sri Hartati, “Pengenalan Jenis Penyakit THT Menggunakan Jaringan Learning Vector Quantization.†Makalah, 2009.

Nurkhozin, Agus, Mohammad Isa Irawan, dan Imam Mukhlas, “Komparasi Hasil Klasifikasi Penyakit Diabetes Mellitus Menggunakan Jaringan Syaraf Tiruan Backpropagation dan Learning Vector Quantization.†Prosiding Seminar Nasional Penelitian, Pendidikan, dan Penerapan MIPA, Universitas Negeri Yogyakarta, 2011.

Maharani, Dessy Wuryandari dan Irawan Afrianto, “Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation dan Learning Vector Quantization Pada Pengenalan Wajah†Jurnal Komputer dan Informatika (KOMPUTA), Edisi I, Volume 1, 2012.

Published

2018-12-31

Issue

Section

Articles