PSO-SVM Untuk Klasifikasi Daun Cengkeh Berdasarkan Morfologi Bentuk Ciri, Warna dan Tekstur GLCM Permukaan Daun
Abstract
Abstract— Of the two types of superior varieties cultivated cloves, clove types of zanzibar is the best kind. However, when not flowering of the three types of clove leaves indistinguishable from the image. This study uses 4 morphological features of shape, 3 color features and 10 most commonly used GLCM features and apply SVM for classification with Particle Swarm Optimization (PSO) optimization method to improve the accuracy of clove plant classification based on leaf surface image. Results of research on the top surface image classification leaf clovers, PSO-SVM method proposed is shown to have a higher accuracy compared with PSO-SVM method than previous research (Novichasari, S.I., 2015) with an accuracy of 90.5% and AUC 0.944.
Â
Keywords— Leaf image classification, cloves, shape, color, GLCM, PSO-SVM
References
Situmeang, T.H, “Analisis Produksi, Konsumsi, dan Harga Cengkeh Indonesia,†Skripsi, Institut Pertanian Bogor, 2008.
Hadiwijaya, T. 1986. Cengkeh: Data dan Petunjuk ke Arah Swa Sembada. PT. Gunung Agung, Jakarta.
Moningka, F. F., Runtunuwu, S. D., & Paulus, J. M. (2012). RESPON PERTUMBUHAN TINGG! DAN PRODUKSI TANAMAN CENGKEH (Syzigium arom aticum L.) TERHADAP PEMBERIAN PACLOBUTRAZOL. Eugenia, 18(2), 18-2.
Gorunescu, F. (2011). Data Mining Concepts,Models And Techniques. Verlag Berlin Heidelberg: Springer.
Ika Novichasari, S. “Klasifikasi Daun Cengkeh Berdasarkan Tekstur Permukaan Daun Menggunakan GLCM Dan PSO-SVM,†Tesis Magister Ilmu Komputer. Universitas Dian Nuswantoro, 2015.
Asanurjaya, B., 2012. Identifikasi tanaman jati menggunakan Probabilistic Neural Network dengan ekstraksi fitur ciri morfologi daun.
Gajdhane, M.V.A. and Deshpande, L.M., 2014. Detection of Lung Cancer Stages on CT scan Images by Using Various Image Processing Techniques. International Journal of computer engineering (IOSR), 16(5).
Nugraheni, O.D., Astika, I.W. and Subrata, I.D.M., 2017. Klasifikasi Inti Sawit Berdasarkan Analisis Tekstur dan Morfologi Menggunakan K-Nearest Neighborhood (KNN). Jurnal Keteknikan Pertanian, 5(2).
Handayanna, F. “Penerapan Particle Swarm Optimization Untuk Seleksi Atribut Pada Metode Support Vector Machine Untuk Prediksi Penyakit Diabetes,†Tesis Magister Ilmu Komputer. Sekolah Tinggi Managemen Informatika dan Komputer Nusa Mandiri,2012.
Zeniarja, J. “Opinion Mining of Movie Review On Twitter Using Support Vector Machine With Particle Swarm Optimization,†Tesis Master of Computer Sience. Universiti Teknikal Malaysia Melaka. 2012.
Melgani, Fand Bazi, Y., (2008). Classification of Electrocardiogram Signals With Support Vector Machines and Particle Swarm Optimization. IEEE Transactions On Information Technology In Biomedicine, Vol. 12, No. 5, September 2008.
Kulkarni, A. H., Rai, H. M., Jahagirdar, K. A., & Upparamani, P. S. (2013). A Leaf Recognition Technique for Plant Classification Using RBPNN and Zernike Moments. International Journal of Advanced Research in Computer and Communication Engineering, 2(1), 1-5.