Segmentasi Fuzzy C-Means Untuk Membantu Identifikasi Kualitas Beras Berdasarkan Nilai Threshold, Warna Dan Ukuran
Abstract
Abstrak— There are several types of rice circulating in Indonesian society, namely: fragrant pandan rice, rojolele, membramo, IR 64, IR 42, C4, etc. To get rice quality assurance, it is necessary to check the quality of rice which is usually done by experienced inspectors. This study aims to produce a tool for inspectors who can process the image of rice and classify the quality of rice and analyze the performance of the classification system. The steps that will be carried out include: preprocessing, feature extraction, and classification. The feature extraction method used is Statistical Feature Extraction in terms of its texture which is one of the physical characteristics of rice. While for classifying quality using the Fuzzy C-Means (FC-M) method. From the results of the study, it was found that the 3 final cluster centers were center cluster 1 (5.89333; 2.05), center cluster 2 (6.28199; 2.546), and center cluster 3 (6.96583; 2.999167) and validation was generated amounting to 92.82%.
Keywords— Klasifikasi Beras. Image Processing, FC-M, Computer Vison
References
Kementrian Pertanian RI. 2013. Konsumsi Rata-rata per Kapita Setahun Beberapa Bahan Makanan di Indonesia, 2009-2013. http://www.pertanian.go.id /Indikator/tabe-15b-konsumsi-rata.pdf, diakses 10 April 2015.
Beras Indonesia. 2014. Produk dan Standar Mutu. http://www.berasindonesia.com /kualitas_produk, disakses 15 Mei 2014.
Ajay, G., Suneel, M., Kumar, K. K., dan Prasad, P. S. 2013. Quality Evaluation of Rice Using Morphological Method. International Journal of Soft Computing and Engineering (IJSCE). Vol. 2(6): 35-37.
Suminar, R., Hidayat, B., dan Atmaja, R. D. 2012. Klasifikasi Kualitas Beras Berdasarkan Ciri Fisik Berbasis Pengolahan Citra Digital. Jurnal Telkom University.
Somantri, A. S., Darmawati, E. dan Astika, I. W. 2013. Identifikasi Mutu Fisik Beras dengan Menggunakan Teknologi Pengolahan Citra dan Jaringan Syaraf Tiruan. Jurnal Pascapanen. Vol. 10(2): 95-103.
Bhardwaj, R., dan Vatta, S. 2013. Implementation of ID3 Algorithm. International Journal of Advanced Research. Vol. 3(6): 856-861.
Aradeo, S. A., Ariyan, Z. dan Yuliana, A. 2011. Penerapan Decision Tree untuk Penentuan Pola Data Penerimaan Mahasiswa Baru. Jurnal Penelitian Sitrotika. Vol. 7(1).
Putranto, B. Y. B., Hapsari, W. dan Wijana, K. 2010. Segmentasi Warna Citra dengan Deteksi Warna HSV untuk mendeteksi Objek. Jurnal Informatika. Vol.6(2): 1-14.
Agmalaro, M. A., Kustiyo, A., & Akbar, A. R. (2013). Identifikasi Tanaman Buah Tropika Berdasarkan Tekstur Permukaan Daun Menggunakan Jaringan Syaraf Tiruan. Jurnal Ilmu Komputer dan Agri-Informatika, 2(2).
Anami, B. S., Suvarna, S. N., & Govardhan, A. (2010). A combined color, texture and edge features based approach for identification and classification of indian medicinal plants. International Journal of Computer Applications, 6(12), 45-51.
Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algoritmss. New York : Plenum Press.
Agusta, Y. (2007). K-Means,Penerapan, Permasalahan danMetode Terkait. Jurnal SistemInformatika. 3:47-60. Di akses pada tanggal 18 Desember 2012.